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SUMMARY 
A robust technique for solving primitive variable formulations of the incompressible Navier-Stokes 
equations is to use Newton iteration for the fully implicit non-linear equations. A direct sparse matrix 
method can be used to solve the Jacobian but is costly for large problems; an alternative is to use an iterative 
matrix method. This paper investigates effective ways of using a conjugate-gradient-type method with an 
incomplete LU factorization preconditioner for two-dimensional incompressible viscous flow problems. 
Special attention is paid to the ordering of unknowns, with emphasis on a minimum updating matrix 
(MUM) ordering. Numerical results are given for several test problems. 
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1.  INTRODUCTION 

Primitive variable formulations of incompressible Navier-Stokes fluid flow problems are notori- 
ously difficult to solve numerically. A robust technique is to use Newton iteration for the fully 
coupled non-linear equations.' - l o  This technique is commonly used at present since it requires 
few (if any) iteration parameters and converges more quickly than segregated approaches such as 
SIMPLE (semi-implicit method for pressure-linked equations).' ' 9  Steady state problems can be 
solved by integrating the time-dependent equations to a very large time. When Newton iteration 
is used to solve the fully implicit equations, large time steps can be taken, so that only a small 
number of time steps is required to reach the steady state. This method is easily applicable to 
many situations, including free surface buoyancy-induced flows,6 generalized Newtonian  fluid^,^ 
unstructure finite-element-type grids,3* a and body-fitted co-ordinate systems.' 

A direct matrix method can be used to solve the Jacobian,'s2.4*6-'0 but this is prohibitively 
expensive for three-dimensional problems. An alternative is to use an iterative matrix method. 
Recently, several authors have applied conjugate-gradient-type methods to fluid flow prob- 
l e m ~ . ~ .  5 .6*8*  l 3  The conclusions of these articles vary. Some authors find that iterative methods 
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are cost-effective compared to direct solvers, while others conclude that iterative methods are not 
competitive with direct solution methods. 

The situation is complicated by difficulties arising from the construction of the Jacobian. 
Because the mass conservation equation does not contain any pressure terms, many discretiz- 
ation methods result in zeros on the diagonal of the Jacobian. Thus, care must be taken in 
ordering the unknowns to avoid a zero pivot during the factorization of the Jacobian. Several 
authors have noticed that the ordering of unknowns affects the convergence properties of iterative 
matrix methods.14-16 The poor performance shown by iterative solvers in some studies may be 
due to lack of attention to the ordering. Convergence may be also be affected by how velocities on 
cell interfaces are calculated. Discretizations using upstream weighting generally produce more 
diagonally dominant Jacobians. However, some diagonal dominance may be lost when more 
complicated weighting schemes are used, and unpredictable behaviour may occur in such cases. 
The objective of this paper is to determine effective ways of using preconditioned conjugate 
gradient (PCG) methods with full Newton iteration for incompressible viscous flow. An incom- 
plete LU (ILU) factorization will be used as a preconditioner. Several ordering strategies, 
including a minimum updating matrix (MUM)16 ordering, will be examined. Also, various 
methods for discretizing the convection flux and their effect on the performance of the iterative 
solver will be considered. The acceleration techniques used in this work will be restricted to 
CGSI7 and CGSTAB;'* no attempt is made to carry out an exhaustive comparison of different 
acceleration schemes. 

As model problems we consider the incompressible Navier-Stokes equations on a selection of 
two-dimensional regions. A standard finite volume discretization defined on a staggered grid is 
used." We believe that the conclusions we make are essentially not affected by the basic 
discretization method (i.e. finite volume or finite element). In another article a few tests on some 
Jacobians generated from finite element discretizations are reported.I6 These results are qualitat- 
ively similar to the results reported here. 

In practice, a sequence of matrix problems is solved, one for each Newton iteration. Conse- 
quently, in the course of solving the non-linear equations, the iterative solver is tested on a variety 
of matrices. The initial matrices will have very poor initial guesses and hence a large number of 
inner iterations (i.e. iterations performed by the matrix solver) is generally required. In contrast, in 
the later stages of the Newton iteration a very good initial guess is available and few inner 
iterations are required to meet the convergence tolerance. We have found that examining the 
behaviour of the iterative methods for a single Jacobian can be misleading. For example, some 
orderings produce good convergence for the first few Jacobian solves but then fail repeatedly for 
the fourth or fifth Newton iteration. Consequently, results will be reported in terms of total CPU 
time and total inner iterations for an entire sequence of Newton iterations. 

2. GOVERNING EQUATIONS AND SOLUTION STRATEGY 

The laws governing two-dimensional incompressible fluid flow are the conservation-of-mo- 
mentum wavier-Stokes) equations 

au a a ap 1 a 2 u  a 2 u  
-+-(uu)+-(vu)+--- T + T  =o, 
at ax 8Y ax R e ( a x  ay ) 
av a a a p  1 a Z v  a 2 V  
- + - ( U u ) + - ( u u ) + - - -  1+2 =o, 
at ax aY ay R e ( a x  ay ) 
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and the conservation-of-mass equation 

au au 
ax ay -+-=O. (3) 

Here u and u are the velocities in the x- and y-directions respectively and p is the pressure. 
Equations (1)-(3) are in non-dimensionalized form with a single parameter, the Reynolds number 
Re. 

The steady state solution to the conservation equations is obtained by using a time-stepping 
method. The equations are discretized using a finite volume approach as described in Reference 
11. Pressures and velocities are given at an initial time. During each time step, Newton’s method 
is used to solve the non-linear discretized equations. An initial guess for the unknowns at each 
step is taken to be the values of the unknowns at  the previous step. 

2.1. Discretization 

The equations are discretized over a staggered grid (Figure 1)’’ The region is divided into 
rectangular cells; pressure unknowns are placed in the centres of the cells and velocity unknowns 
are placed at the faces. The velocity is given at  the boundaries of the region. Since the system is 
incompressible, one of the pressure unknowns is set to an arbitrary value. The mass conservation 
equation is integrated over each cell (Figure 2(a)) with dimensions Ax x Ay to give 

( U i +  I ,  j-ui, j)AY + (ui, j +  I -ui, j)Ax=O* (4) 

The Navier-Stokes equations (1) and (2) are integrated over ‘staggered’ cells containing u and v at 
their centres (Figures 2(b) and 2(c)). Using the notation of Reference 11, the two equations can be 
written more generally as 

a4 aJ, aJ, 
at ax ay 
-+-+-= S, 
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Figure 2. Finite volumes containing p ,  u and u 
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1 84 J , = u 4  -- -. 
Re ay 

- 

5+/, j 

(7) 

The variable 4 represents u or u and S represents the source term (in this case the pressure 
differential). Integrating equation ( 5 )  over a cell containing 4 at its centre, with dimensions 
A x  x Ay ,  gives 

where 

S* = ( P i ,  j - P i -  1, j)AY 

when 4 = u and 

S* =(Pi. j- P i ,  j -  I )Ax 
when 4 = Y. J i +  1/2, and J i -  1/2, represent the values of J ,  at the right and left interfaces of the cell 
respectively. Ji, j +  112 and J i ,  j -  112 represent the values of J, at the top and bottom interfaces 
respectively. The equations are fully implicit; that is, all variables except for the &, in the 
time-derivative term are solved at the new time (4i , j=4T,)1) .  

2.2. Weighting techniques 

Many methods are available to discretize the convection-diffusion fluxes J ,  and J, .  For 
example, if we wish to find the value of J ,  at a cell interface between two grid points chi, and 
$i+ j ,  we can write J i + 1 / 2 ,  as 

where h is the distance between the two grid points, u is the average velocity through the cell and 
Re, = R e  uh is the cell Reynolds number. Different values of k can be chosen to implement various 
weighting schemes (see Reference 11 for a complete discussion of this topic). For example, 
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k = 1 - 0 5  I Re,l corresponds to central weighting (when the interface is midway between the grid 
points) and k = 1 corresponds to upstream weighting. It is well known that for large cell Reynolds 
numbers, non-physical oscillatory solutions are obtained with central weighting. Upstream 
weighting tends to be overly diffusive. A compromise between these two techniques is the hybrid 
scheme (k = max(0, 1 - 0.5 1 Re, I)), which is essentially central weighting for 1 Re, 1 I 2 and up- 
stream weighting, with the diffusion term (1/Re) &$/ax omitted from J,, for IRe,l>2. 

Another alternative is the exponential scheme. This scheme bases the calculation of J, on the 
solution to the local one-dimensional convection4iffusion problem, 

dJ, - = O ,  
dx 

between the two adjacent grid points. The exact solution is given by 

exp( Re, x / h )  - 1 
exp( Re,) - 1 ' 

4 ( X ) = 4 i , j + ( 4 i + l ,  j-4i,j) 

This leads to 

in equation (9). As equation (12) shows, the exponential scheme involves expensive computation 
of exponentials and therefore it is not widely used. Power-law weighting is a popular approxima- 
tion to the exponential scheme which is less expensive to compute. With power-law weighting, 

k=max[O, (1-0.11Re,1)5]. (13) 
More complex weighting schemes such as QUICK19 can also be used. Because we wish to 

restrict our discussion to commonly used, easy-to-implement weighting schemes, most of our 
tests are carried out with power-law weighting. Some tests are performed with upstream and 
hybrid weighting as well. 

Power-law weighting has been used successfully in the past since it produces frozen coefficient 
equations with positive coefficients." However, when the Jacobian is constructed for Newton 
iteration, derivatives of k (equation (1 3)) appear whenever 1 Re,( I 10. These entries may cause the 
off-diagonal entries in the Jacobian to change sign and may also reduce diagonal dominance, thus 
causing difficulties with convergence of the iterative matrix method. This problem is aggravated 
on fine grids with small cell Reynolds numbers, but can be avoided by using upstream weighting 
( k = l )  since full upstream weighting does not result in any derivatives of k appearing in the 
Jacobian. If using power-law weighting causes convergence problems, we can still obtain the 
power law solution in one of several ways. 

1. (PLR-Power-law right-hand-side) Upstream weighting is used far the Jacobian and 
power-law weighting is used for the right-hand-side vector throughout the solution process. 

2. (PLL-Power-law on last step) Upsfream weighting is used for both the Jacobian and 
right-hand-side vector on all time steps except the last, on which power-law weighting is 
used for the Jacobian and right-hand-side vector. 

3. (PLRL-Power-law right-hand-side on last step) This is the same as method 2, except 
upstream weighting is used for the Jacobian on all the time steps, including the last. 

We would expect that using a Jacobian and a right-hand-side vector created from different 
discretizations would result in slower convergence of Newton's method. This suggests that 
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method 2 (PLL) is the best choice, since for every matrix equation the Jacobian and right- 
hand-side vector are formed from the same discretization. This method is essentially finding an 
upstream solution and then using it as a good initial guess for computing the power-law solution. 
Since a good initial guess is available, the Jacobian formed with power-law weighting on the last 
time step should be relatively easy to solve. However, the other two methods (PLR and PLRL) 
are probably more robust since they use an upstream Jacobian throughout the solution proced- 
ure. These observations are supported by the numerical experiments reported in Section 6. 

Although some of the above methods use a different weighting technique for the Jacobian and 
right-hand-side, all methods will converge to the same solution (to within convergence tolerance) 
to the non-linear discrete algebraic equations after the last time step. 

In other words, for a given weighting method used to construct the right-hand side, the same 
algebraic solution to the steady state problem is obtained, but different techniques are used to 
obtain the solution. Thus PLR, PLL and PLRL all converge to the same power-law solution. On 
the other hand, use of upstream weighting for the right-hand side of the last time step, will of 
course yield the solution to the upstream weighted discrete equations, which is different from the 
solution obtained using power-law weighting (for a finite grid size). 

Of course, there is much debate concerning the relative merits of upstream, hybrid and 
power-law weighting schemes in terms of accuracy of the solution (i.e. comparison of the solution 
of the discrete equations with the true solution of the partial differential equations). It is not the 
purpose of this paper to add to this debate. For a given discretization method and grid size we are 
concerned with obtaining the solution to the discrete equations as efficiently as possible. 

Although the methods above describe how to obtain the power-law solution, they can be used 
to efficiently obtain the hybrid and exponential solutions as well. 

3. ORDERING 

The performance of the PCG method is greatly affected by the order of the  unknown^.'^-'^ 
Usually, the alignment of unknowns and equations is such that the kth equation is the one 
obtained by integrating over a cell containing the kth unknown at its centre: 

unknown corresponding equation 

Pi. j 

"i, j 

Vi. j 

Because the discrete mass conservation equation (4) does not contain any pressure unknowns, 
this alignment can lead to zeros on the diagonal of the Jacobian matrix. With direct matrix 
solvers, pivoting can be used to prevent a division by zero during Gaussian elimination, but it is 
time-consuming to continually update the data structures. Alternatives are to realign the 
equations so that no zeros appear on the diagonal' or to add non-zeros to the diagonal using 
a penalty f ~ n c t i o n . ~  However, with the iterative solver used in our experiments, zeros on the 
diagonal cause no problem as long as all diagonal locations are filled in with non-zeros before 
they are used as pivots. A pressure unknown will appear in the discrete momentum equation (5 )  
corresponding to any of the velocity unknowns surrounding it (Figure 2(a)). If any of these 
velocity unknowns are incompletely eliminated before the pressure unknown, then fill-in from the 
momentum equation will produce a non-zero diagonal element in the row of the matrix 
corresponding to the mass conservation equation. 

mass conservation equation about cell ( i , j )  
u-momentum equation about ui, 
v-momentum equation about vij 
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3.1, Natural and pressure-last orderings 

With natural (or ‘uup’) ordering, the grid is traversed left to right, bottom to top. At each cell 
(Figure 2(a)) the u-component at  the left face is ordered first, the u-component at the bottom face 
is ordered next and the pressure is ordered last. If either face is on a boundary, the velocity at  the 
face is known and consequently is ignored in the ordering process. For any interior cell (i.e. one 
that has no faces on a boundary) the uup ordering guarantees that a neighbouring velocity 
unknown will be eliminated before the pressure unknown is eliminated. However, problems arise 
when both the bottom face and the left face of a cell land on boundaries (Figure 3(a)). If the 
velocities at the other faces have not been eliminated, then the matrix solver will fail because of 
a zero pivot in the incomplete factorization. If there is only one such cell, we can resolve this 
problem by removing the pressure unknown in it. (Recall that one of the pressure unknowns must 
be set to an arbitrary value.) However, if the boundaries do  not form a simple rectangle, ethen 
there may be more than one such cell (Figure 3(b)). 

An ordering technique that does not suffer from this problem is the p-last ordering. With this 
technique all the pressure unknowns are ordered last. Thus all the velocities are eliminated before 
any of the pressures are eliminated and the diagonal elements corresponding to the continuity 
equations are filled in. In fact, once the velocities have been eliminated, the equations that remain 
are similar to the pressure equations obtained by using a segregated solution technique such as 
SIMPLE. 

It is possible to combine natural ordering with the robustness of the p-last ordering. The uup 
ordering is used with one modification. Whenever cells with bottom and left faces on boundaries 
are encountered, the pressure unknowns for (only) those cells are ordered last. We call this 
ordering technique the uup* ordering. 

3.2. Minimum updating matrix ordering 

The following sections give a brief description of minimum discarded fill and minimum 
updating matrix orderings applied to ILU preconditionings. More details are given in References 
15 and 16. 

x Uneliminoted unknown 
Boundary volue 

( 0 )  ( b )  

Figure 3. Cells leading to zero pivots with uup ordering 
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3.2.1. ILU(1) fuctorizution. Assume after k steps of an LU factorization process of a sparse 
matrix A that we have the decomposition 

where L k  and Uk are k x k lower and upper triangular respectively with unit diagonal, Dk is k x k 
diagonal, Rk is ( n - k ) x k ,  Qk is k x ( n - k ) ,  I , - k  is the ( n - k ) x ( n - k )  identity and Ak is the 
( n -  k)  x ( n  - k )  submatrix that remains to be factored. We assume in the following that A need 
not be symmetric but has a symmetric incidence matrix. 

Some new non-zero fill-in entries in Ak might be created in the factorization process. We apply 
the concept of ‘fill level’ to these non-zero entries to characterize how the fill-in is introduced. All 
original non-zero entries in A have fill level zero. Fill-in created by eliminating the first node has 
fill level one. The level of any new fill-in can be determined by the level of the matrix entry which 
creates this fill-in. More precisely, let u!!) be a non-zero element of matrix Ak.  Initially we have 

0 if uij#O, 
00 otherwise. 

level!?) = 

At each step of the elimination process the fill levels are modified as 

levell!): = min(level$- ‘)+levelfj-’)+ 1, level$-1)). (16) 
In an ILU(I) factorization, only fill-in entries with fill level less than I+ 1 are kept, i.e. level$)< I, 

Now consider the kth step in an ILU(l) factorization of A. If uki-’) is chosen for the next pivot 
k =  1, . . . , n -  1. All other fill entries are discarded. 

element, then 

where 

Ek = Bk - X k p : / U i i -  ’). (18) 
Since the fill level of each element bij in Bk is known and level{;-’)< I ,  using (15) and (16), the fill 
level of each element eij in E k  can be determined. In the incomplete factorization of matrix A, 
some of the entries in the factor are discarded to prevent excessive fill and computation. Let 
matrix F k  contain the discarded entries. Some fill entries with level > I may have been created in El, 

after the kth step of the factorization. The factorization proceeds with a perturbed Al, 

Ak = Bk - Mk - F k ,  Mk=C(kpl/a&-”= [mi:’], (19) 
where 

3.2.2. Minimum updating matrix ordering. We present a graph model”. for describing the 
factorization process as a series of node eliminations. The graph model is invaluable in providing 
an insight into the minimum discarded fill ordering. 

To simplify the notation, we assume the elimination sequence is u l ,  u2, . . . ,on. Let graph 
Gk = ( “ Y k ,  f f k ) ,  k = 0,1, . . . , n - 1, be the graph corresponding to matrix Ak = [ u!,”)] of (19). The 
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vertex set and edge set are defined as 

“ y k = ( V k + l , u k + Z , .  . * , u n } ,  8 k =  ((vi, vj)la!:)#o}. (21) 

We assume each vertex has a self-loop edge (ui, ui) and each edge (ui, u j )  has a value of a$). 
A minimum discarded fill (MDF) ordering for ILU(1) decomposition is to choose the next 

pivot node ui such that the size of the discarded fill (i.e. the sum of the squares of the discarded fill 
entries) in Ek is minimized. It has been shown that MDF ordering is effective for problems having 
a small molecule.16 However, MDF ordering is very expensive for a sparse matrix with a large 
molecule. Jacobians formed from the Navier-Stokes equations have this characteristic (i.e. a large 
number of non-zeros in each row). MDF ordering requires a search through the nested linked lists 
of the sparse matrix Ak to identify the fills and their levels in order to determine the discarded fill 
in h f k .  This kind of searching is costly. Instead, a cheaper heuristic, minimum updating matrix 
(MUM) ordering, is used for the Navier-Stokes application. The basic idea of this ordering is to 
choose the next pivot node ui such that the Frobenius norm (the sum of the squares of the matrix 
entries) of the matrix i t?k  is minimized, where the matrix is defined as M k  without the diagonal 
entries. The motivation is simple: if 11 gk / I F  is small, the discarded fill entries in i t?k must be small, 
since the discarded fill entries are a subset of the entries in gk. This approach avoids searching 
nested sparse linked lists in an MDF-type ordering and has proven to be a cost-effective ordering 
strategy for sparse matrices with large molecules.16 The computation of the norm of the update 
matrix is 

See Algorithm 1 for the description of the MUM ordering algorithm. 

Algorithm 1. Description of MUM algorithm 

Initialization: 

A o : = A  
for each aij#O 

level$‘) : = 0 
end 
for each node. vi 

Compute the norm of the update matrix updatenrm (ui )  
(see Algorithm 2). 

end 
for k=l,...,n-l 

1. Choose as the next pivot node D, in matrix Ak-  which has minimum updatenrm (u,) 

2. Update the decomposition 
(break ties by choosing earlier node). 

Ak : = &  - Mk - Fk, Mk = akfl:/ai\- ‘ ) ,  

where F k = [ f $ ’ ]  is given by (20) and Pk is permutation matrix to exchange u, to first 
position, 
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3. Update the fill level of elements in A, by (16). 
for each ui a neighbour of urn, ( u i ,  u r n ) E 8 k - 1  

for each uj  a neighbour of urn, (urn, U ~ ) € C ? ~ - ~  

end 

level!!) : = min(level!~-;;”+ levelf,; l )  + 1,1evel$-’)). 

end 

4. Update the norms of update matrices of urn’s neighbours. 
for each ui a neighbour of urn in 8 k -  

updatenrm(ui)= 11 @ k +  1 (IF, Pk+ I A,P:+ 1 = [ d k +  ’ ’:”I 
@ k + l  Bk+1 

where F k +  is given by (20), M k  + = ak+ /It+ l/aik! 1, k +  and Pk+ is permutation 
matrix to exchange ui to first position (see Algorithm 2). 

end 
end 

Algorithm 2. 

Procedure 

end 

Description of procedure for calculating norm of update matrix 

update-nrm (. .) 
updatenrrn(ui) : = 0 
for each neighbour uj of ui in gPk 

for each p such that {a!:;# 0, p Zj} 

end 
end 

Note that this definition of MUM ordering always uses the same level for the ILU update 
matrix f i k  in the ordering algorithm as is used in the ILU factors for the PCG iteration. This does 
not actually have to be the case, but we will not pursue this distinction in the current work. 

The solution of the Navier-Stokes equations requires the solution of a series of matrix 
problems. It is natural to perform an MUM ordering at the beginning of the computation, based 
on the first Jacobian. However, the first Jacobian may not be characteristic of all the Jacobians 
arising during the solution of the equations. For example, if the initial velocity unknowns were set 
to zero, then the flow configuration at the start would resemble a Stokes flow, which is 
a Navier-Stokes flow without the convection (non-linear) terms. The flow may not take on the 
characteristics of a Navier-Stokes flow until after the first few time steps. Hence the initial MUM 
ordering may not be the best ordering to use in the later stages of the solution process. Because 
the MUM ordering time is very small compared with the total solution time, it is often 
advantageous to find a new MUM ordering midway through the solution process. 

4. COMPUTATIONAL DETAILS 

4.1. Time-stepping strategy 

The discretized equations are integrated to steady state, a dimensionless time of lo4. Some tests 
were also carried out using a dimensionless stopping time of lo5 for the Re= lo00 problems. The 
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final results for (u, u, p) were unchanged to three significant figures compared to the runs with 
a stopping time of lo4. Initially, velocities and pressures are set to zero and a small time step 
(lo-') is chosen. If the solution at each time is obtained successfully, the time step is multiplied by 
10, so steady state is reached after only six steps. At each step the non-linear equations are solved 
to convergence. We use an absolute tolerance of i.e. the solution is computed until there are 
no more changes in the first three decimal places. (All variables are scaled to be 0(1).) If the 
changes in velocity after any time step produce non-physical results (i.e. velocities that exceed the 
maximum velocity on the boundary), then the changes are ignored and the step is repeated with 
a smaller increase in time. The step is also repeated if a maximum number of Newton iterations 
(20  for the tests described below) is surpassed. 

A scheme that dynamically determines the size of time steps may be more efficient. It is also 
probable that it is not necessary to solve the Newton iteration to convergence during the 
intermediate pseudo-time steps. However, for the purpose of this paper it was preferable to use 
a fixed series of times and to solve to convergence at each time to ensure a fair comparison of the 
various strategies studied. 

4.2. Linear strategy 

Each iteration of Newton's method requires a solution of the Jacobian. We have found that 
ILU(2) is an effective preconditioner for Jacobians arising from the Navier-Stokes equations, so 
this is used for all the tests described below. The linear equations are solved to an absolute 
tolerance of The maximum number of inner iterations allowed for each linear problem is 
300. If convergence is not reached after the maximum number of inner iterations, the solution 
obtained at that point is returned regardless and used in the next iteration of Newton's method. 

In Section 6 experiments with other aspects of the linear strategy are described. The effects of 
three ordering strategies (uup*, p-last and MUM) and two acceleration methods (CGS and 
CGSTAB) are compared. 

For completeness, the precise CGSTAB algorithm is given below (the incomplete factorization 
of A is denoted by LU). Right preconditioning is used. 

ro = b -  Axo; 
6 0- -1;/?=1; aO=1; AqO=q,=O; 
i =  1,2, 3, . . . 

- 

For 
B= 
qi=ri- 1 +mi(qi- 1 

qi = ( L U ) - ' qi 
T i -  1 ) ;  mi = (B//?)(hi - - i /ai-  1 ); 

1 Aqi- 1) 
- 

s = r i - l - 6 i A q i  
s= ( L U ) -  1s 

a i=( t ,  s ) / ( t ,  t )  
t = A 5  

x i = x i P l  + h i q i + a i s  
if converged, then quit 
T i  =s - ait 

End 

Thus the total number of floating point multiplications needed for one CGSTAB iteration is 

2 N Z P  + 2 N Z  + 10N, 



284 P. CHIN ET AL. 

where N is the number of unknowns, NZP is the number of non-zeros in the incomplete 
factorization and N Z  is the number of non-zeros in the original matrix. 

The MUM ordering is performed at the beginning of the computation; it is based on the 
Jacobian created on the first Newton iteration of the first time step. 

5. TEST PROBLEMS 

The performance of the computational procedure was tested using several problems. Results were 
obtained with Reynolds numbers of 100, 500 and 1OOO. 

5.1. Problem 1: ‘cavity’ 

The first problem is confined flow in a driven cavity (Figure 4). This is a common test problem 
which has been solved on grids as large as 320 x 320.” The region is a unit square. The velocity is 
zero on all the boundaries except the top boundary, where the horizontal velocity is equal to one. 
An equally spaced grid is used with Ax = Ay.  This problem was solved on 20 x 20, 40 x 40 and 
80 x 80 grids. 

5.2. Problem 2: ‘NU cavity’ 

each j =  1 to ny, 
The second problem is the driven cavity problem on a non-uniform grid. On an n, x ny grid, for 

O-l/nxl  for i = l  to nXl 

O.1/(n,-nXz) for i=nXz+1 to n,, 
Axi j=  O.8/(nxZ-n,,) for i = n X l + 1  to nX2,  

0. l/n, 1 for j =  1 to nYl 
Ayi j=  0.8/(ny2-nyl) for j = n y l + l  to nyz, 

1 
where nXl =nx/3 and nxz =2nX/3. For each i =  1 to n,, 

1 O.l/(n,-nyz) for j = n y 2 + 1  to ny, 

where nyl = ny/3 and nyz = 2ny/3. This problem was also solved on 20 x 20, 40 x 40, and 80 x 80 
grids. 

u = l  
___) 

L 1 - I  

Figure 4. The driven cavity problem 
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5.3. Problem 3: ‘step’ 

The third problem is sudden expansion flow in a channel, commonly called the ‘backward- 
facing step problem’ (Figure 5). The dimensions of the region are taken from Reference 23. Fluid 
enters from the left, passes over a step and leaves at the right. At the left and right boundaries of 
the region the velocity has no vertical component but has a parabolic profile for the horizontal 
component. There are no-slip conditions a t  the other boundaries. At the left boundary the 
maximum horizontal velocity is equal to one. At the right boundary the velocities are set so that 
the amount of flow into the region is equal to  the amount of flow out of the region. Recent work, 
on the step problem has shown that for certain geometries the flow may not be completely 
developed at the end of the channel.24 Therefore it may be unrealistic to impose a parabolic 
outflow condition. Because we are primarily interested in solution techniques rather than the 
solutions themselves, the velocity profile at the end of the channel is not a great concern. For 
notational convenience we will refer to the grid sizes used for this problem as 20 x 20,40 x 40 and 
80 x 80. It should be understood that these numbers refer to the smallest rectangle which overlays 
the problem domain of Figure 5. This grid has a constant spacing in the x-direction and 
a constant spacing in the y-direction, with AxZAy. Some of the cells in this rectangle grid fall 
outside the problem domain (i.e. those in the lower left-hand corner of Figure 5 )  and hence are not 
included in the computation. 

5.4. Problem 4: ‘channel’ 

The fourth problem is the ‘convoluted channel problem’ (Figure 6). Flow enters from the left 
with a maximum velocity of one and leaves at the right. The horizontal components of the 
velocities have a parabolic profile at these boundaries and the velocity is zero at all other 
boundaries. At the right boundary the velocities are set so that the amount of flow into the region 
is equal to the amount of flow out of the region. The parabolic outflow condition may be 
unrealistic for such a short channel. As stated above, this is not a concern since we are simply 
treating this problem as a test case for various solution strategies. As with Problem 3, we refer to 
the various grids used for this problem as 20 x 20,40 x 40 and 80 x 80. This refers to the smallest 
rectangle which contains the region of Figure 6. Constant spacing is used in the x- and 
y-directions. Cells which fall outside the region of Figure 6 are not included in the computation. 

Table I shows the number of unknowns corresponding to the different grid sizes for the four 
8 test problems. 

6 .  RESULTS AND DISCUSSION 

Solutions to the test problems described above were computed using various strategies. The 
results given in this section are in terms of total iterations (for all the Newton iterations) and total 

4 i  I 

Figure 5. The backward-facing step problem 
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"m0I 

Figure 6. The convoluted channel problem 

Table I. Number of unknowns for various grid sizes 

grid size 

Problem 20 x 20 4 0 x 4 0  80 x 80 

Cavity 
NU cavity 
Step 
Channel 

1159 4719 19039 
1159 4719 19039 
1123 4524 18259 
744 3139 12660 

execution time. In the tables, normalized execution times are provided to facilitate comparison. 
A different normalization factor is used for each distinct test problem. The normalized total CPU 
time includes Jacobian construction, matrix solution and reordering costs (where applicable). 
Because the normalized CPU time includes time for system tasks, the execution times listed below 
may be in error by as much as 5%. 

For some of the tests the number of Newton iterations and the average number of inner 
iterations per Newton iteration are also given. When solving a particular problem at a given 
Reynolds number and grid size, we would expect a constant number of Newton iterations 
regardless of the techniques (e.g. ordering, acceleration) used for the linear problems. In practice, 
when a test problem is solved with two different techniques, one case may require an extra 
Newton iteration owing to small differences caused by round-off error. This extra Newton 
iteration usually requires only a few inner iterations. Occasionally, the matrix solver may fail to 
converge to a solution for a particular Newton iteration (i.e. the maximum number of inner 
iterations is reached before the required inner tolerance is achieved). In such a case the number of 
total Newton iterations may be greatly affected. In the tables below, two asterisks (**) indicate 
that at least one such convergence failure occurred. 



PCG METHODS FOR THE N-S EQUATIONS 287 

A computational process was aborted if too many repeat time steps were required or if 
a maximum execution time was surpassed. In the tables given below, the entry ‘failed’ indicates 
that a solution was not obtained for one of these reasons. For these cases the maximum number of 
allowable repeat time steps was set to three. 

6.1. Comparison of ordering strategies 

Results for the four problems were obtained with three Reynolds numbers on a 40 x 40 grid 
using the uup*, p-last and MUM orderings. MUM ordering was used in two cases. In the first case 
(denoted simply by ‘MUM’ in the results) the MUM ordering was performed once at the start. In 
the second case (denoted by ‘MUM*’) a second MUM ordering was performed before the third 
time step. Power-law differencing and CGSTAB acceleration were used for the tests described in 
this section. 

Table I1 shows the number of Newton iterations required. Convergence problems were 
encountered in several test cases using uup* and p-last orderings. No solution was obtained for 
two cases with uup* ordering. Table I11 shows the total execution time and the total inner 
iterations required. For all the test cases except one, either MUM and MUM* orderings also 
showed the lowest execution times for most of the cases. For the few cases where uup* was fastest, 
uup* required about 15%-25% less time than MUM*. However, for the NU cavity and step 
problems MUM and MUM* showed significantly superior performance. The p-last ordering 
required, on average, twice as much time as MUM* ordering. 

It is clear that the p-last ordering is a poor choice. The uup* ordering sometimes results in low 
execution times when it works, but it is prone to convergence failures. Although the MUM 
ordering does not always show the best performance, it is certainly the most robust ordering, 
since it did not fail in any of our tests. Thus the MUM ordering may be a particularly good choice 
if a very difficult problem needs to be soloved or if the overall solution strategy is not very 
sophisticated. The MUM ordering can also be used when a a priori ordering like uup* cannot be 
easily determined (e.g. on a finite element mesh). Generally, the MUM ordering produces more fill 

Table 11. Number of Newton iterations using various orderingst 

Ordering 

Problem Re uop * p-last MUM MUM* 

Cavity 100 14 13 13 13 
500 20 20 20 20 

lo00 22 22 22 22 
N U  cavity 

Step 

Channel 

100 
500 

lo00 
100 
500 

lo00 
100 
500 

lo00 

Failed 
21** 
28** 

Failed 
21** 
27** 
16 
19 
21 

16 
21 
28 
17** 
19 
28** 
16 
19 
24** 

15 
21 
28 
15 
18 
22 
16 
19 
21 

15 
21 
28 
15 
18 
22 
16 
19 
21 

t‘**’ means maximum inner iterations reached for at least one Newton iteration; ‘Failed’ means Computational 
procedure failed to produce a solution. 40 x 40 grid, power-law differencing and CGSTAB acceleration were used. 
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Table 111. Normalized total execution time (and inner iterations) for various orderingsf 

Ordering 

Problem Re uvp * p-last MUM MUM* 

Cavity 100 
500 

lo00 
NU cavity 100 

500 
lo00 

Step 100 
500 

lo00 

Channel 100 
500 

lo00 

~ 

080 (322) 
1.25 (512) 
1.41 (602) 

601 (3106)** 
5.47 (2793)** 

1.66 (1474)** 
214 (1886)** 
0.74 (290) 
0.96 (423) 
1.08 (510) 

Failed 

Failed 

1.31 (460) 
2.27 (867) 
3.58 (1453) 

1.88 (656) 
2.48 (883) 
4.33 (1637) 

2.56 (1866)** 
3.15 (2323) 
6.48 (4865)** 
1.23 (465) 
2.31 (1005) 
610 (2951)** 

1.00 (298) 
1.32 (465) 
1 44 (520) 

1.02 (236) 
1.48 (378) 
2.16 (656) 
0.94 (453) 
1.43 (759) 
2.09 (1132) 

1.01 (300) 
1.14 (459) 
1.44 (628) 

1.00 (274) 
1.09 (357) 
1.14 (403) 
1-00 (202) 
1.59 (396) 
2.22 (636) 
1.00 (464) 
1.43 (729) 
1.99 (1060) 

1.00 (289) 
1.14 (429) 
1.23 (508) 

t ‘**’ means maximum inner iterations reached for at least one Newton iteration; ‘Failed‘ means computational procedure 
failed to produce a solution. 40 x 40 grid, power-law differencing and CGSTAB acceleration were used. 

than the uup* ordering. Even though MUM usually requires fewer inner iterations, it occasionally 
requires more execution time than uup* because the solution time for each inner iteration is 
proportional to the amount of fill. The execution time obtained with the MUM ordering can be 
significantly reduced if a drop tolerance were used to decrease the amount of fill.16 

Table I11 also shows an interesting trend. For the MUM orderings the solution times increase 
monotonically as the Reynolds number increases (for a given problem). This is intuitively 
reasonable. However, the uup* ordering does not show this behaviour. In some cases uvp* fails for 
low Reynolds numbers and succeeds for high Reynolds numbers. Although the uup* approach 
ensures that the diagonal pivots of the incomplete factorization are not identically zero, this 
ordering may produce a poor preconditioner (some of the pivots could be numerically small). 
Clearly, the unpredictability of the uup* ordering is a disadvantage of this ordering compared to 
MUM ordering. 

In forming the uup* and p-last orderings, the grid is traversed in an x-y fashion (i.e. x-direction 
first, then y-direction). The MUM reordering is also performed on an initial x--y ordering. It has 
been shown that a y-x ordering produces much faster convergence for anisotropic problems with 
strong coupling in the x-direction.”. 2 5  The three orderings with y-x traversal of the grid were 
tested on the four problems (Re= 10oO). In most cases the execution time (Table IV) was not 
altered drastically when y-x ordering was used. However, y-x uup* ordering required 70% more 
time for the NU cavity problem and y-x p-last ordering required 38% more time for the step 
problem. These two problems are highly anisotropic. The MUM ordering was the least sensitive 
to the change, which caused no more than 10% difference in execution time for each of the test 
problems. This again shows that MUM ordering is a robust technique. 

6.2. Comparison of acceleration methods 

The test problems (Re = 1OOO) were solved on 40 x 40 grids using C a S  and CGSTAB acceler- 
ation methods. Power-law differencing and MUM ordering were used. For all the test problems 
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Table IV. Normalized execution times for x-y and y-x orderingst 

Ordering 

uop * p-last MUM 

Problem X-Y Y-X X-Y Y-X X-Y Y-X 

Cavity 0.98 0.99 2.48 2.83 1 .00 1 a6 
N U  Cavity 2.53** 4.30** 2.00 1.93 1 .00 0.95 
Step 1.02** 1.28** 3.09** 4.23** 1 .00 1.06 
Channel 0 7 5  1.04 4.24** 3-21** 1 -00 0.98 

t ‘**’ means maximum inner iterations reached for at least one Newton iteration. Re= 1O00, 40 x 40 grid, 
power-law differencing and CGSTAB acceleration were used. 

Table V. Normalized execution time (and inner iterations) with CGS 
and CGSTAB accelerations? 

~~ 

Acceleration 

Problem CGS CGSTAB 

Cavity 
N U  cavity 
Step 
Channel 

1.22 (660) 1.00 (520) 
1.26 (878) 1.00 (656) 
1.10 (1321) 1.00 (1132) 
1.15 (758) 1.00 (628) 

t Re= 1O00, 40 x 40 grid, power-law differencing and MUM ordering were 
used. 

CGSTAB required fewer inner iterations and lower execution times (Table V). The advantage of 
CGSTAB shows up even more clearly when the Jacobian is harder to solve. For example, when 
the step problem was solved with p-last ordering, an answer was obtained with CGSTAB 
acceleration, while with CGS acceleration the computation failed to complete because of an 
excessive number of convergence failures. For any Newton iteration, if the maximum number of 
inner iterations is reached, then the answer obtained thus far is used for the next Newton 
iteration. If the residual has been reduced at all by the matrix solver after the maximum number of 
inner iterations, then the new solution is a better approximation than the previous guess. Because 
the CGSTAB method shows a more monotone decrease in the residual, the new approximation is 
usually better than the old approximation. With CGS the residual is an erratic function of 
iteration number. Fluctuations in the residual may cause the matrix solver to return a worse 
approximation after a given number of inner iterations. If the new answer is extremely bad, this 
may cause further convergence problems. 

A few tests with ORTHOMIN2’ acceleration showed that it performed very poorly compared 
to either CGS or CGSTAB. In most cases it required at least twice as much CPU time as CGS 
and in some cases it failed to produce a solution. Hence ORTHOMIN is not considered a viable 
alternative for these types of test problems. 
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6.3. Results fo r  diflerent weighting strategies 

An anticipated, power-law weighting led to convergence problems with the matrix solver on an 
80 x 80 grid. Thus an alternative method was required to obtain solutions on fine grids. The three 
methods for obtaining the power-law solution discussed earlier were tested on the four problems 
(Re=  1000) on a 40 x 40 grid. CGSTAB acceleration and MUM ordering were used. Table VI 
shows the execution time required by these methods compared with times required for pure 
upstream or power-law weighting. Recall that power-law, PLR, PLL and PLRL all converge to 
the power-law solution, while the column in Table VI labelled ‘Upstream’ refers to the converged 
upstream solution, which is observably different from the power-law solution at these grid sizes. It 
can be seen that by using PLL, the power-law solution can be obtained at little extra cost 
compared to the cost of obtaining the upstream solution. Although PLRL shows slightly poorer 
performance than PLL, it is probably more robust, since an upstream Jacobian is used through- 
out the procedure. The PLRL method was used to obtain the power-law solution for the cavity, 
step and channel problems on an 80 x 80 grid at Re= 1000. The streamlines are shown in Figures 
7-9. 

As mentioned above, the three methods PLR, PLL and PLRL all produced values that 
matched the power-law values to three digits on a number of test cases. Using an approximation 
to the Jacobian at any point in the solution procedure affects only intermediate values but does 
not affect the accuracy of the final solution. However, the methods do vary in efficiency, as shown 
in Table VI. Given a particular discretization (e.g. power-law, hybrid, upstream, etc.) and grid size, 
all solution methods produce identical values. Naturally, the solutions will vary with difleerent 
discretizations. 

In order to further verify that our methods were producing valid solutions, the results were 
compared with previous work. The cavity problem with Re= loo0 was solved on an 80 x 80 grid 
using a variation of PLRL (upstream Jacobian and right-hand-side throughout except hybrid 
right-hand-side on the last step) to obtain the hybrid solution. The maximum negative value for 
u on the vertical centreline was -0.338, which agrees to three figures with the value given in 
Reference 22 for the identical test problem with hybrid weighting of the flux terms. 

6.4. Eflect of grid size 

It is of interest to obtain an estimate of the effect of grid size on the number of inner iterations 
required to solve the Jacobian. In order to eliminate the effect of non-linearities, a Stokes flow 
driven cavity problem was solved on various grids (with Re= 1oo0). CGSTAB acceleration and 
MUM ordering were used. The convergence tolerance for this linear problem was an absolute 
tolerance of and an initial guess of p = u = u = O  was used. The number of iterations (15, 28 

Table VI. Normalized execution time with various weighting strategies? 

Weighting strategy 

Problem Upstream Power-law PLR PLL PLRL 

Cavity 1.00 1.66 1.59 1.24 1.26 
N U  cavity 1 .oo 1.73 1.80 1.23 1.51 
Step 1.00 1.17 1.64 1.18 1.27 
Channel 1 *oo 1.43 1.50 1.28 1.46 

t Re = 1O00, 40 x 40 grid, CGSTAB acceleration and MUM ordering were used. 
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Figure 7. Streamlines for the driven cavity problem, Re= to00 

(b) 

Figure 8. Streamlines for the backward-facing step problem, Re = 1ooO: (a) complete channel, (b) close-up of vortex 

and 54 for 20 x 20,40 x 40 and 80 x 80 grids respectively) approximately doubles as the number of 
unknowns increases fourfold. This indicates that the number of iterations is roughly proportional 
to O(N’”), which is what would be expected for a second-order operator. Note that for the 
special case of Stokes flow a preconditioner has been developed which results in the number of 
iterations being independent of grid si~e.’~.~’ 

The full Navier-Stokes equations were also solved on three different grids. These runs were 
carried out using upstream weighting to avoid the complicating effect of using a combined 
upstream/power-law approach as discussed above. CGSTAB acceleration and MUM ordering 
were used. The execution times and inner iterations are shown in Table VII. The number of 
Newton iterations and the average number of inner iterations per Newton iteration are shown in 
Table VIII. The number of inner iterations per Newton iteration shows an approximate O(N’ / ’ )  
behaviour for the full non-linear problem. Thus the total work is about O(N”5). For the 80 x 80 
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Figure 9. Streamlines for the convoluted channel problem, Re= loo0 

Table VII. Normalized execution time (and inner iterations) for various grid sizest 

Grid size 

Problem 20 x 20 40 x 40 80 x 80 

Cavity 
NU cavity 
Step 
Channel 

1.00 (204) 6.52 (365) 73.8 (1173) 
1.00 (302) 5.00 (402) 41.0 (888) 
1*00 (400) 9.19 (1066) 93.9 (2768) 
1.00 (251) 7.70 (493) 55.6 (925) 

t R e =  1OO0, upstream weighting, CGSTAB acceleration and MUM ordering were used 

Table VIII. Number of Newton iterations (and average number of inner iterations per 
Newton iteration) for various grid sizest 

____ 

Grid size 

Problem 20 x 20 40 x 40 80 x 80 

Cavity 
NU cavity 
Step 
Channel 

19 (107) 19 (19.2) 25 (46.9) 
22 (1 3.7) 22 (18.3) 22 (40.4) 
18 (22.2) 21 (50.8) 26 (106.5) 
18 (13.9) 20 (24.7) 22 (42.0) 

t Re= 1oo0, upstream weighting, CGSTAE acceleration and MUM ordering were used. 

grids the MUM ordering time was only about 2% of the total time. As the grid becomes finer, this 
cost will become insignificant compared to the matrix solution cost. 

As expected with the PCG method, the required storage showed an O ( N )  behaviour. With 
ILU(2) preconditioning, roughly 0.6 kbytes of storage was required for each unknown (all 
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variables are double-precision). Of course, a direct solver generally requires more storage. For 
example, in Reference 4 the YSMP code uses 0 ( N ” 3 )  storage and requires 0 ( N ” 8 )  work. 

The overall computation time can usually be improved by first solving the problem on a coarse 
grid and then extrapolating to obtain an initial solution on the desired grid. This technique is 
effective in most cases; however, care must be taken when a complicated geometry producing 
a number of vortices (such as the convoluted channel problem) is being considered. Another 
possibility is to extrapolate in Reynolds number. Our preliminary tests have shown this to be less 
advantageous than using coarse grid approximations. However, more testing is required before 
we can present any conclusion on this subject. 

Starting from all-zero initial values, as we have done here, provides a good test of the 
robustness of the solution strategies. In practice, however, one would normally start with an 
approximate solution as discussed above. In order to compute these initial approximations, it is 
still necessary to use a robust technique such as MUM. (Note that uup* can fail for low-Re 
problems; see Table 111). Consequently, using coarse grid or low-Re initial approximations would 
not alter our conclusions. 

7. CONCLUSIONS 

PCG iterative methods can be used for effective solution of Jacobian matrices arising from finite 
volume discretizations of the incompressible Navier-Stokes equations. However, the ordering of 
the unknowns has a large effect on the convergence behaviour and on the efficiency of incomplete 
factorization preconditionings. 

In the case of finite volume discretizations on regular grids it is possible to deduce several 
a priori orderings which ensure that zero pivots are not encountered during the incomplete 
factorization. However, a more robust method is the MUM (minimum updating matrix) ordering 
technique. Numerical tests have shown that MUM ordering results in generally faster conver- 
gence compared to the a priori orderings. The more efficient of the two a priori orderings was uup* 
(see Section 3.1). At best, uup* was 15%-25% faster (in terms of total CPU cost) compared to 
MUM ordering. However, uop* sometimes required twice the CPU cost of MUM ordering and 
occasionally failed to converge within the allotted maximum CPU time. MUM ordering suc- 
ceeded (completed the runs within the CPU time limit) in all cases. MUM was also fairly 
insensitive to the initial ordering, while the uup* ordering was very sensitive to the initial ordering. 

Another advantage of MUM ordering is that it takes as input a general sparse matrix and uses 
no information about the underlying discretization method or the structure of the mesh. 
Consequently, we expect MUM ordering to be even more effective for finite element discretiz- 
ation on unstructured meshes. Some preliminary testsI6 support this conjecture. 

The performance of ILU PCG methods is affected by the weighting used in the discretization of 
the momentum flux terms. Upstream weighting always produces a well-conditioned Jacobian. 
However, use of power-law or hybrid weighting schemes often caused poor convergence behavi- 
our on fine meshes. These methods (weighted average of upstream and downstream) ensure 
positive coefficients for the frozen coefficient equations. However, when a Jacobian is constructed, 
the derivative of the weighting factor may cause the off-diagonals of the Jacobian to change sign 
and the Jacobian may become less diagonally dominant. Nevertheless, an efficient technique for 
obtaining the power-law solution is to use upstream weighting for the construction of the 
Jacobian while evaluating the residual using the power-law method (on the last time step only). 
The same idea can also be used for hybrid weighting. Tests show that this method obtains the 
hybrid or power-law solution at a cost of 20%-40% more CPU time compared to full upstream 
weighting. 
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Our tests also indicate that CGSTAB acceleration seems to be more effective than CGS 
acceleration, especially in the context of a Newton iteration. ORTHOMIN did not appear to be 
competitive. We have also found that a level 2 ILU seems to be the most efficient in terms of total 
CPU cost for two-dimensional problems. Finally, the combination of an ordering method and 
use of a drop tolerance in the ILU preconditioning is a promising avenue of further work.16 
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